Chemistry Letters 1999 405

Synthesis of (+)-(R)-1-Amino-2,2-difluorocyclopropane-1-carboxylic Acid through Lipase-Catalyzed Asymmetric Acetylation

Masayuki Kirihara,* Tomofumi Takuwa, Masashi Kawasaki,† Hiroko Kakuda,†† Shun-ichi Hirokami,†† and Hiroki Takahata Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194 †Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi-Machi, Toyama 939-0398 ††Laboratory of Chemistry, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194

(Received February 5, 1999; CL-990075)

(+)-(R)-1-Amino-2,2-difluorocyclopropane-1-carboxylic acid was synthesized *via* the lipase-catalyzed asymmetric acetylation of a pro-chiral diol as the key step.

1-Aminocyclopropane-1-carboxylic acid (ACC) (1), which is found in many plants, has several biological activities. ¹ In the field of medicinal chemistry, the introduction of a fluorine atom into biologically important compounds often has dramatic effects on their biological activity. In the case of ACC, Kirk reported that racemic mono-fluorinated ACC (2) [1-amino-2-fluorocyclopropane-1-carboxylic acid (FACC)] showed potencies comparable to the parent ACC at the NMDA receptor.²

gem-Difluorinated ACC [1-amino-2,2-difluorocyclopropane-1-carboxylic acid (DFACC)], which is an unknown compound in the literature, is also an attractive synthetic target, because some amino acids containing the gem-difluorocyclopropane moiety have interesting biological activities.³ Peptides containing DFACC as their amino acid residue are also interesting compounds, since several peptides having the ACC residue show variegated biological activities.¹

We now describe the first total synthesis of (+)-(R)-1-amino-2,2-difluorocyclopropane-1-carboxylic acid [(+)-(R)-DFACC] [(R)-3] through the lipase-catalyzed asymmetric acetylation of a pro-chiral diol as the key step.

The pro-chiral diol containing the *gem*-difluorocyclopropane moiety (5) was synthesized from the diacetate (4) as follows: Diacetate (4), easily prepared from 2-methylidene-1,3-propanediol, was subjected to difluorocyclopropanation using the difluorocarbene derived from sodium chlorodifluoroacetate in diglyme at 180 $^{\circ}$ C 4 followed by subsequent deacetylation to afford 5 (Scheme 1).

Scheme 1. Reagents and conditions: i) CIF₂CCO₂Na, diglyme, 180 °C (74%); ii) K₂CO₃, MeOH, H₂O (61%).

We then examined the lipase-catalysed asymmetric acetylation of 5⁵ to obtain the chiral monoacetate (6). Three commercially available lipases [porcine pancreatic lipase (PPL), Novozym 435

from Candida antarctica, and Amano PS from Pseudomonas cepacia] were tested for their selective acetylation ability toward 5 in organic solvents. As it is well known that the hydrophobicity of organic solvents can influence the enantioselectivity of lipase-catalyzed reactions,⁶ a variety of organic solvents were used. These results are summarized in Table 1. The PPL-catalyzed reaction proceeded very slowly (Runs 1-5). Although several reactions proceeded at the appropriate reaction rate, PPL provided 6 in low enantiomeric excess (Runs 2, 4). The pro-chiral selectivity of Novozym 435 toward 5 was also very poor (Runs 6, 7). Excellent enantioselectivity (91.3% ee) with a high chemical yield was obtained when 5 was treated with lipase PS and vinyl acetate in benzene/di-i-propyl ether = 20:1 at 35 °C (Run 9). The selectivity was improved with an increase in the hydrophobicity of the solvent used (Runs 8-10).

Table 1. Lipase-catalyzed acetylation of the diol 5

Ru	n Lipase ^a /mg	Solvent/ml	Vinyl acetate /eq	Reaction time/h	ee /%	c	ld/% iacetate
1	PPL (10)	Pr ⁱ ₂ O (2)	1	145	_	22.2	0.6
2	PPL (100)	PhH (2), Pr ⁱ ₂ O (0	.1) 1	146	23.5	91.0	6.1
3	PPL (100)	THF (2)	10	96	_	62.2	4.1
4	PPL (100)	AcOEt (2)	10	48	35.5	76.0	5.9
5	PPL (100)	CH ₃ CN (2)	10	96	_	68.1	8.3
6	Novozym435 (10)	PhH (1), Pr ⁱ ₂ O (1) 1	1	45.8	90.8	2.6
7	Novozym435 (10)	$Pr_{2}^{i}O(2)$	1.5	1	37.5	89.6	10.1
8	PS (10)	PhH (1), Pr ⁱ ₂ O (1) 10	1.5	88.6	95.1	1.7
9	PS (10)	PhH (2), Pr ⁱ ₂ O (0	.1) 10	1.5	91.3	96.5	1.2
10	PS (10)	CH ₃ CN (2)	10	0.5		73.9	3.7

^aPPL: porcine pancreatic lipase (Amano), Novozym 435: *Candida antarctica* (Novo), PS: *Pseudomonas cepacia* (Amano). ^b10 mg of 5 was used. ^cDetermined by HPLC analysis (DAICEL CHIRALCEL OB-H, hexane/ *i*-PrOH = 20/1) of the corresponding benzoyl ester of 6.

We next tried to synthesize the desired chiral amino acid [(R)-3] starting from the chiral mono-alcohol (6) (Scheme 2).

The oxidation of **6** with Jones reagent afforded the carboxylic acid **7**, and **7** was converted into carbamates ($\mathbf{8}$)⁷ using Shioiri's method [diphenylphosphoryl azide (DPPA), benzyl alcohol or *t*-butanol, and triethylamine in refluxing benzene].⁸ The alkaline hydrolysis of **8** provided the *N*-protected aminoalcohols ($\mathbf{9}$).^{7,9}

At this stage, the ester 10 was prepared from 9a and (S)-(+)-

406 Chemistry Letters 1999

O-acetylmandelic acid, and the absolute configuration of ${\bf 10}$ was determined using an X-ray structural analysis. The ORTEP plot shows the X-ray structure of ${\bf 10}^{10}$ (Figure 2). This result means that ${\bf 6}$ and ${\bf 9}$ have the (R)-configuration.

N-BocDFACC (11b) was obtained through the Jones oxidation of 9b, 12 and the acid hydrolysis of 9b provided the desired (+)-(*R*)-1-amino-2,2-difluorocyclopropane-1-carboxylic acid $[(R)-3]^{13}$ as a hydrochloride.

Scheme 2. Reagents and conditions: i) Jones oxid., rt; ii) for 8a; DPPA, BnOH, Et₃N, C₆H₆, reflux, 50% in two steps, for 8b; DPPA, t-BuOH, Et₃N, reflux, 51% in two steps; iii) K₂CO₃, MeOH, H₂O, rt, 9a: 66%, 9b: 93%; iv) (S)-(+)-O-acetylmandelic acid, DCC, DMAP, CH₂Cl₂, rt, 99%; v) Jones oxid., rt; vi) aq.HCl, AcOEt, rt, 99% in two steps.

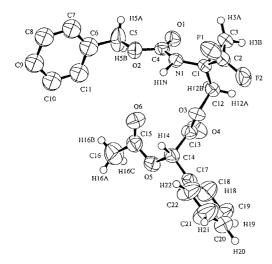


Figure 2. ORTEP diagram of 10 with 50% thermal ellipsoids. The minor disordered contribution of phenyl group of benzyloxycarbonyl group is omitted for clarity.

The asymmetric synthesis of (-)-(S)-1-amino-2,2-difluoro-cyclopropane-1-carboxylic acid [(S)-3, the enantiomer of (R)-3 and a biological evaluation of (R)-3 are currently under investigation.

We thank Amano Pharmaceutical Co., Ltd., and Novo Nordisk Co., Ltd., for kindly providing the lipases.

References and Notes

- L. F. Burroughs, Nature, 179, 360 (1957); D. O. Adams and S. F. Yang, Proc. Natl. Acad. Sci. U. S. A., 76, 170 (1979); J-C. G. Marvizón, A. H. Lewin, and P. Skolnick, J. Neurochem., 52, 992 (1989); V. Nadler, Y. Kloog, and M. Sokolovsky, Eur. J. Pharmacol., 157, 115 (1988); D.K.J.E. Von Lubitz, R. C.-S. Lin, R. J. McKenzie, T.M. Devlin, R. T. McCabe, and P. Skolnick, Eur. J. Pharmacol., 219, 153 (1992); H. Kodama and Y. Shimohigashi, J. Synth. Org. Chem. Jpn., 52, 180 (1994).
- M. J. Sloan and K. L. Kirk, Tetrahedron Lett., 38, 1677 (1997).
- Taguchi and co-workers recently reported the synthesis of amino acids containing the difluorocyclopropane moiety [2-(2-carboxy-3,3-difluorocyclopropyl)glycines]; A. Shibuya, A. Sato, and T. Taguchi, *Bioorg. Med. Chem. Lett.*, 8, 1979 (1998).
- 4 Y. Kobayashi, T. Taguchi, M. Mamada, H. Shimizu, and H. Murohashi, *Chem. Pharm. Bull.*, 27, 3123 (1979); Y. Kobayashi, T. Taguchi, T. Morikawa, T. Takase, and H. Takanashi, *J. Org. Chem.*, 47, 3232 (1982).
- 5 Itoh and co-workers recently reported the lipase-catalyzed asymmetric hydrolysis of *cis*-1,2-bis(acetoxymethyl)-3,3-difluorocyclopropane; T. Itoh, K. Mitsukura, and M. Furutani, *Chem. Lett.*, **1998**, 903.
- 6 C. R. Wescott and A. M. Klibanov, *Biochim. Biophys. Acta*, 1206, 1 (1994).
- 7 These compounds were purified by recrystallization from n-hexane (for 8b and 9b) or n-hexane / ethyl acetate (for 8a and 9a).
- 8 K. Ninomiya, T. Shioiri, and S. Yamada, *Tetrahedron*, 30, 2151 (1974).
- 9 Based on HPLC analysis of the benzoyl esters of 9. The optical purity of these compounds turned out to be almost 100%ee. Only one enantiomer was detected.
- 10 Crystal data for 10: colorless prismatic crystals; mp 99-101 °C; recrystallized from *n*-hexane ethyl acetate; $C_{22}H_{21}F_2NO_6$, M=433.40, monoclinic, a=10.129(3), b=9.069(2), c=12.606(2) Å, $\beta=109.500(14)$ °, U=1091.5(4) Å³, T=296 K, space group P_{21} (no. 4), Z=2, μ (Mo K α) = 0.107 mm⁻¹, 2801 reflections measured, 2657 reflections unique, RI=0.0572, wR2=0.1703.
- 11 The enantiopreference of the lipase-catalyzed asymmetric acetylation of 5 followed the empirical rule proposed by Kazlauskas *et al.*: A. N. E. Weissfloch and R. J. Kazlauskas, *J. Org. Chem.*, **60**, 6959 (1995).
- 12 Although the oxidation of **9a** with Jones reagent gave *N*-Cbz-DFACC (**11a**), all attempts (H₂-Pd/C-AcOEt, TMSI-CH₃CN or aq.KOH-MeOH) to deprotect the Cbz group from **11a** were unsuccessful.
- 13 ($\it R$)-3•HCl: colorless crystals; mp 170 °C (decomp.); $[\alpha]_D^{27.2}$ +5.10° (c, 1.05, H₂O); IR (neat) cm⁻¹: 2899, 1722, 1472, 1186; ¹H-NMR (DMSO-d₆) δ : 2.54-2.59 (2H, m); ¹³C-NMR (DMSO-d₆) δ : 20.53 (t, $\it J_{CF}$ = 9.3 Hz), 79.05 (t, $\it J_{CF}$ = 9.3 Hz), 109.26 (t, $\it J_{CF}$ = 286.5 Hz), 164.62 (s); ¹⁹F-NMR (CDCl₃) δ : -133.8 (1F, dt, $\it J_{FF}$ = 157.2 Hz, $\it J_{HF}$ = 11.6 Hz), -136.2 (1F, ddd, $\it J_{FF}$ = 157.2 Hz, $\it J_{HF}$ = 10.2, 6.5 Hz); FAB-HRMS Found 138.0363. Calcd for C₄H₆F₂NO₂ (M⁺+H) 138.0367.